SIR C R REDDY COLLEGE FOR WOMEN

(Affiliated to AdikaviNannaya University, Rajahmahendravaram)

Vatluru (Post), Pedapadu Mandal, West Godavari Dist., (A.P)

PG ENTRANCE COACHING For M.Sc., (CHEMISTRY)

Date: 01-Aug-2020To30-Aug-2020

Time: 9:30 am to 12:30 Pm

Organized by

CAREER GUIDANCE & PLACEMENT CELL

2019-2020

INDEX

S. No	Particulars	Page No
1	About Programme	1
2	Learning Objectives and Learning Outcomes	2
3	Permission Letter	3
4	Notice to Staff and Students	4
5	Course Structure	5
6	Course Material	6
7	Students List	15
8	Student attendance register	16
9	Report	17
10	List Of Students Qualified in MS.c Chemistry	18
11	Rank Cards	19
12	Photo Gallery	21

About Programme

The Career Guidance and Placement Cell at Sir CR Reddy College for Women organized PG entrance coaching classes for NANNAYACET 2019 in Commerce, Mathematics, Physics, Chemistry, and Life Sciences. These classes were conducted by senior faculty members who specialize in the respective subjects at the college.

Program: PG Entrance Coaching for M.Sc. Chemistry

Subjects Covered:

chemistry

Target Audience:

• III B.SC(MPC,MCCS,CBZ) students aspiring for postgraduate studies

Duration:

• April 5th, 2019, to May 4th, 2019 (30 days)

Time:

• 9:30 AM to 12:30 PM (Morning sessions)

Organized By:

• Career Guidance and Placement Cell at Sir CR Reddy College for Women

Resource Person:

• Coaching by Mrs V.Raja Rajeswari senior lecturer in chemistry

Program Overview:

- Specifically designed coaching program focusing on NANNAYACET 2019 for M.Sc. aspirants.
- Conducted by seasoned faculty members from Sir CR Reddy College, each specializing in MSC Chemistry.
- Comprehensive curriculum comprising subject-specific lectures, problem-solving sessions, practice tests, and exam strategy workshops.
- Tailored content to acquaint students with the NANNAYACET exam pattern, syllabus, and effective preparation methodologies.

Benefits for B.Sc. Students:

- Early guidance and preparation assistance for M.Sc. entrance exams.
- Exposure to exam patterns, aiding in better preparedness.
- Access to experienced faculty for subject-specific guidance and doubt resolution.
- Enhanced readiness for M.Sc. studies by initiating preparation in advance.

This coaching program aims to support B.Sc. students in their aspirations for pursuing postgraduate studies by providing structured coaching specifically aligned with the requirements of the NANNAYACET 2019 examination.

Learning Objectives and Learning Outcomes

Learning Objectives:

- 1. Subject Mastery: To facilitate a comprehensive understanding of the core concepts and subject-specific knowledge required for M.Sc.Chemistry entrance exams.
- 2. Exam Familiarity: To familiarize students with the exam pattern, question types, and syllabi specific to NANNAYACET 2019.
- 3. Problem-Solving Skills: To enhance problem-solving abilities and critical thinking necessary to tackle complex questions in the entrance exams.
- 4. Time Management: To equip students with effective time management strategies for the exam and optimize their performance within the stipulated time frame.
- 5. Exam Strategy: To provide guidance on effective exam strategies, including question selection, prioritization, and efficient answering techniques.

Expected Outcomes:

- 1. Strong Foundation: Students are expected to build a strong foundational understanding of their respective subjects, providing a basis for advanced studies.
- 2. Improved Performance: Enhanced problem-solving skills and a better grasp of exam patterns can result in improved performance in mock tests and the actual entrance exam.
- 3. Confidence: Through regular practice and guidance, students are likely to gain confidence in handling diverse questions and scenarios during the examination.
- 4. Effective Preparation: Students should be better prepared to face the challenges of the entrance exams by utilizing learned strategies and subject-specific knowledge.
- 5. Readiness for Postgraduate Studies: The coaching program aims to prepare students adequately for the rigors of postgraduate studies in their chosen fields.

Permission Letter

Permission Letter

26-07-2020 Eluru

Yours Faithfully,

Career Guidance and Placement Cell

To The Principal Sir C.R.Reddy College for Women Eluru

Subject: Request to grant permission to conduct P.G Entrance test Coaching Classes to final year students.

This is to bring to your kind notice that, Career Guidance and Placement Cell is planning to conduct P.G Entrance test Coaching Classes for interested III B.Sc/B.Com students specializing life Sciences, Mathematics, Physics, Chemistry, Commerce.

The coaching classes aim is to provide additional support and guidance to our ambitious students who aspire to excel in their respective fields and we believe that providing coaching classes with in our college will not only benefit our students but also contribute to the overall academic excellence of our institution. These classes will be conducted for about 30 days i.e., from 1St August 2020 to 30th August 2020. The duration of these classes will be from 9:30 am to 12:30 pm. I kindly request your approval for this initiative, as it aligns with our commitment to fostering academic excellence and preparing our students for successful futures.

Thanking you Madam,

3

Notice to Students

NOTICE

27-07-2020

This is to inform you all that Career Guidance and placement Cell arranged P.G Entrance Test Coaching Classes for interested III B.Sc/B.Com students specializing life Sciences, Mathematics, Physics, Chemistry, Commerce. These Classes will be held within the college at Seminar Hall from 1st August 2020 to 30th August 2020 running from 9:30 am to 12:30 pm. This initiative aims to enhance your preparation for P G Entrance Test offering personalized guidance to help you excel in the examination. These sessions will provide valuable insights and guidance.

We encourage all interested candidates to attend and take advantage of this valuable opportunity.

Principal

Course Structure

Chemical Sciences

Inorganic chemistry:

s-block elements, p-block elements, Chemistry of d block elements block elements, Organ metallic Chemistry, Organ metallic Chemistry, Spectral and Magnetic Properties of Metal Complexes, Stability of metal complexes

Organic Chemistry

Hydroxyl Compounds, Carboxylic acids and derivatives, Exercises in interconversion, heterocyclic compounds, Amino Acids and proteins.

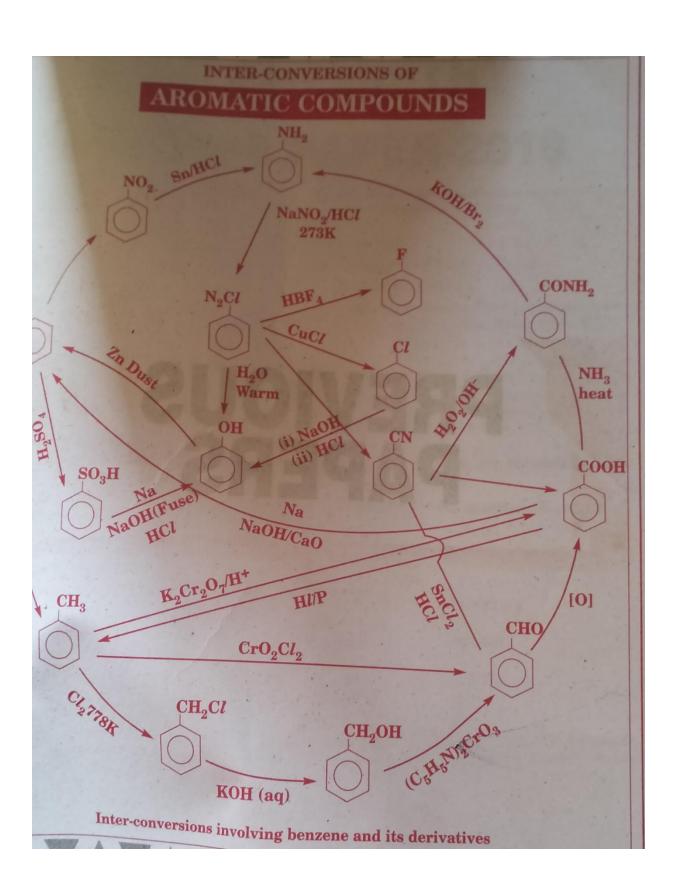
Physical chemistry:

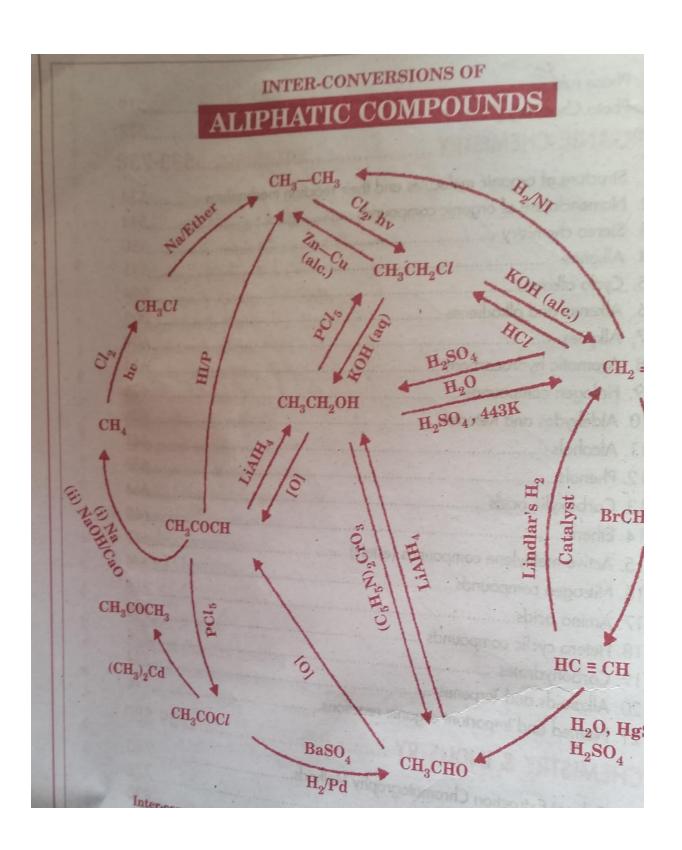
Liquid State, Gaseous State, Physical State, Electro chemistry, chemical kinetics.

General Chemistry

Theory of quantities analysis, Chemical Bonding, Molecular symmetry, Evaluation of analytical data Liquid State, Gaseous State, Physical State, Electro chemistry, chemical kinetics.

General Chemistry


Theory of quantities analysis, Chemical Bonding, Molecular symmetry, Evaluation of analytical data General principal of inorganic quantities analysis.


Course material

120	Maria No.
Index	
	519
12. Phase rule	527
12. Phase rule	533-738
ORGANIC CHEMISIKI	
1. Structure of organic molecules and their reaction mechanisms	544
3 Stereo chemistry	
4 Alkanes	
5. Cyclo alkanes	************
6. Alkenes and alkadienes 7. Alkynes	609
7. Alkynes.	614
8. Aromatic hydrocarbons 9. Halogen compounds	625
9. Halogen compounds	636
10. Aldehydes and Ketones	645
11. Alcohols	657
13. Carboxylic acids	
13. Carboxylic acids	668
14. Ethers	671
15. Active methylene compounds (esters)	678
16. Nitrogen compounds	696
17. Amino acids	705
18. Hetero cyclic compounds	714
19. Carbohydrates	724
20. Alkaloids and Terpenes	728
21. Named and Important organic reactions	
CHEMISTRY & INDUSTRY	739-880
1. Solvent Extraction Chromatography Methods	740
2. Spectroscopy	//2
3 Drug Chemistry	020
A Macro Molecules	844
5. Catalysis	865
	6

Index

	983
19. Andhra University, 2010	987
20. University of Hyderabad, 2010	000 000
INORGANIC CHEMISTRY	223-382
. a . P	224
a All-li metals (Group I A Elements)	
Alkaline earth metals (Group II A Elements)	248
4. Boron family (Group III A Elements)	258
5. Carbon family (Group IV A Elements)	271
6. Nitrogen family (Group V A Elements)	284
7. Oxygen family (Group VI A Elements)	294
8. Halogens (Group VII A Elements)	306
9. Transition elements	320
10 Lanthanides and Actinides	321
11 Zero group elements	330
11. Zero group elements	341
13. Metallic bond, Metallurgy and Alloys	348
14. Organometallic compounds	
15. Coordination compounds	360
16. Nuclear Chemistry	3/1
PHYSICAL CHEMISTRY	383-532
	384
1. Structure of atom	305
Theory of chemical bonding Gaseous state (Kinetic molecular theory of gases)	400
Solutions Solutions	
Liquid state (Binary liquid mixtures)	133
7. The Solid state	433
	443
8 Chemical equilibrium	AFA
8. Chemical equilibrium	456
8. Chemical equilibrium 9. Chemical Kinetics 10. Chemical Thermodynamics (Chemical and in the chemical a	
8. Chemical equilibrium 9. Chemical Kinetics 10. Chemical Thermodynamics (Chemical energetics) 11. Electro Chemistry	

The number of possi [Pt(NO ₂)(C ₃ H ₅ N)(NI	ible geometrical isomers for	II. The crystal fi			y for high-
The state of the s	***************************************	spin d ⁴ octah	170		
	ty of complexes Fe ²⁺ , CO ²⁺ ,	16 Dq			
Ni2+, Cu2+ for the gi	ven ligand in	318 Dq+P			
1.Fe2+ > CO2+ > Ni2+ >	Cu3+	12 i. [PtCI4]2-			
2. Fe2+ Ni2+ > CO2+ > 0	CU2+	II. [PtCI,]2-	NH ₁ X	C ₂ H ₄ Z	
3. Cu2+ > Ni2+ > CO2+	> Fe2+	In the above			tively are:
4. Cu2+ > CO2+ > Fe2+	> Ni ²⁺	1. trans (PtCL)	(NH ₂) ₂ l, trans	PtCl_(NH,	(C_2H_4)
Which of the follow	ing complexes do not obey	2. trans-[PtC/			
Effective atomic nu	mber rule?	3. cis-[PtCl ₂ ()	NH ₃) ₂], trans-	{PtCL(NH ₃)	C ₂ H ₄)
i. [Cr(NH ₃) ₆] ³⁺	ii. [Ni(NH ₄) ₄] ²⁺	4. cis - [PtCL]			
III. [CO(NH ₃) ₆] ²⁺	iv. [Pt(NH _a) _e] ⁴⁺	13. X is an ess			
1. ii, iv only	2. i,ii, iii only	industry (pa			ng) causes
3. iv only	4. i, ii only	severe water			NI.
The d orbital invi	olved in hybridization of				. Ni
orbitals of Fe during	the formation of Fe(CO), is	14. Identify X a	ind Y in ti	ne tottowin	g reaction
1.3d ₁ 2 2.3d ₁ 2 ₋₁ 2	3.4d,2 4.4d,2_2	sequence	0		
The pair in which	both the molecules have	C ₈ H ₈ dil.H ₂ S	PhCHO	HMe X	PhCOMe
same magnetic mon	ATTOO NO.	n ₂ so	4		
L [Cr(H ₂ O) ₆] ²⁺ , [CoCl		Br ₂ /Na	он		
2. [Cr (H ₂ O) ₆] ²⁺ , [Fe(H	(A) (1) (B)	11/	OH Y		
3. [Mn(H ₂ O) ₆] ²⁺ , [Fe(F	#(2)(M)	X 113'	Y		
4. [COCI4]2-, [Mn(H2C		1.mCPBA	PhCO	CH_Br	
	llowing is not coloured?	X	Y		
L [Ti(H ₂ O) ₆] ³⁺	2. [CO(H ₂ O) ₆] ² *	2. H ₂ CrO ₄	PhCO	ОН	
3. [Cu(H ₂ O) ₆] ² *	4. [Sc(H ₂ O) ₆] ³⁺	x	Y		
HgR ₂ + Mg solvent	, MgR ₂ + Hg	3. H ₂ CrO ₄	PhCO	OBr	
The solvent used in	the above reaction is:	X	Y		
1. Ethanol	2. Methanol	4. KMnO ₄	PhBr		
3. Benzene	4. Ether	15. Observe the	following	tetrahedral	intermedi-
The number of brid	iging carbonyls present in	ates that are	formed wh	en nucleopi	hile attacks
Fe ₃ (CO) ₁₂ is		acyl carbon	of various c	arbonyl con	npounds.
1.1 2.2	3.3 4.4	Qθ	o ₀	00	00
Which one of the fol	lowing is nido-carborane?	R-C-Nu	R-C-Nu	R-C-Nu	R-C-Nu
1. C ₂ B ₁₀ H ₁₂	2. C ₂ B ₄ H ₈	H	R	CI	NH.
3. C ₂ B ₂ H ₁₃	4. C ₀ B ₁₀ H ₁₀	1	11	III	IV.
Which one of the fol		Which of the	and the same of		and the second second
100	2. SC3+ is soft acid	stitution pro		naves will le	ad to a sub-
10011	A POU is soft bose	- manual pro			

1. III, IV 2. I, III

3. II, IV

4. II, III, IV

3. CO is hard base

4. ROH is soft base

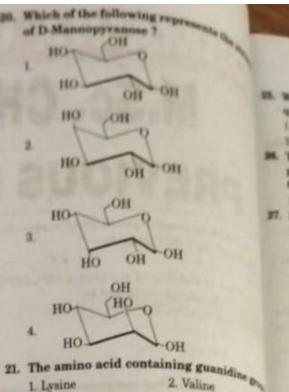
The product of a nitre compound A (C ₂ H ₂ NO ₂) and nitrous sold, does not dissolve in sedium and nitrous sold, does not dissolve in sedium kydrovide. Nitre compound A gave B when kydrovide Nitre compound by H ₂ SO ₄ Isomer reacted with Nath HCHONH ₂ CI gave C.
What are B and C?

CH,CH,CH:NO, CH,NH, L B CHLOOCH

C. CH_LCINO_CH_NH CH_CH_CHO

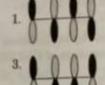
3.25 (CH₂)₂C(NO₂)CH₂NH₃ CHLCOCH,

6.31 CH,CH,CH+ CH; CH,COCH,


12. An organic compound X dissolves in dil. HCl but does not give IR absorption band in the range of 3500-3400 cm⁻¹, where as compound Y does not dissolve in dil. HCl but displayed IR absorption hand at 3500-3400 cm⁻¹. Identify X and Y.

18. Solution of ZnCl2 and conc. HCl turned cloudy on heating with an alcohol (A). A on reaction with PBr, and then with the reagent B is converted to C (major), which on reduction gave D. What are A, B and D?

CH, CH, CH, NHCH, NaCN CH,CH,CH,OH A AgCN CH, CH, CH, NHCH, CH,CH,CH,OH B D A сн снонсн, AgCN (CH₃)₂CHNHCH₃ (CH₄),COH NaCN (CHa) CCH NH.


19. Identify the statement that is NOT correct from the following

- 1. Benzene free from thiophene is obtained by shaking the mixture containing both by conc. HNO,
- 2. Pyrrole resembles aniline in reactivity
- 2. Furan is less aromatic than pyrrole.
- 4. Pyridine resembles nitrobenzene in reactivity towards electrophilic substitution

- 1. Lysine
- 2. Valine
- 3. Proline
- 4. Arginine

22. Which of the following molecular orbits sents excited state HOMO of 1, 3

23. The major producct from the following a tion is

Meso-2,3 - dibromobutane

24. Which of the following represents funcing group interconversion (FGI)?

$$L \bigcirc ^{\mathrm{CO_2H}} \Rightarrow \bigcirc ^{\mathrm{CH_3}}$$

II.
$$\bigcirc$$
 CH₃ \Rightarrow \bigcirc + CH₃X

III.
$$\bigcirc$$
 OCH₃ \Rightarrow \bigcirc OH + (CH₃)SO₄

- gs. Which of the following will give doublet and a quartet in 'H-NMR spectroscopy?
 - 1. Ethyl chloride 2. Acetic acid

3. Ethane

- 4. Acetaldehyde
- 36. The number of carbon atoms present in a compound, whose mass spectrum showed M'at m'z 86 (% RA 50) and M+1 at 87 (%RA 2.8)

1.3

2.5

3, 2

- 27. Match the following List-I List - II A. PhCOCH3 L 1725
 - B. PhCH2OH II. 1760 C PhCH2CHO III. 3330

Correct answer is

	A	В	C
1.	IV	III	1
	A	В	C
2.	IV	III	п
	A	В	C
3.	1	IV	II
	A	B	C

11

28. In a conductance cell, the dimensions of the electrodes are 1 cm and 1.5 cm and the two electrodes are separated by 0.5 cm, then the cell constant value in cm-1 is.

IV

2.0.4 1.75

3. 1.0 4. 0.33

29. The molar conductances of sodium acetate, hydrochloric acid and sodium chloride at infinite dilution are 91.0 × 10-4, 426.16 ×10-4 and 126.45 s.m2. mol-4, respectively at 25°C. The molar conductance at infinite dilution for acetic acid is

1. 461.61 2. 390.71 3. 643.61 4. 210.70

- 30. All electro chemical cell in construct by combining Ag and Cd electrodes. The standard eduction potentials of Ag and Cd at 25°C are + 0.80 and -0.40 V respectively. Which of the following statement is correct?
 - 1. In electrochemical cell reaction Ag becomes Ag* and Cd2+ becomes Cd
 - 2. Both Ag and Cd electrodes undergo oxidation
 - 3. In electro chemical cell reacting Ag* reduces to Ag and Cd oxidises to Cd2+
 - 4. Both Ag and Cd electrodes undergo reduction
- 31. The rate constant value for the decomposition of gaseous $N_2O_5 \rightleftharpoons 2NO_2 + \frac{1}{2}O_2$ is 5×10^{-4} S⁻¹.

Calculate the time required for the NoOs concentration to be reduced to 10% of the original value.

- 1.46×10³ 2.46×10⁻³ 4. 5.93 = 100 $3.5.93 \times 10^{7}$
- 32. Persulphate Iodide reaction follows second order kinetics. The units for the rate of the above reaction is

1. dm3.mol-1.8-1

2. mol.dm².8⁻¹

3. dmf.mol-1.S-1

4. 35-1

33. -3, 100 J.mol-1 work is done during the converstion of one mole of water at 100°C to steam at 1 atm. pressure. Heat of vapourisation of water at 100°C is 40,670 J.mol-1. Change in internal energy during the process in J.mol-1 is

1.0 3. -13.1 2.43,770 4.37,570

Joule - Thomas coefficient, μ_{1-T} is defined as

$$-\left(\frac{\partial E}{\partial T}\right)_{V} = 2\left(\frac{\partial T}{\partial P}\right)_{H} = 3\left(\frac{\partial H}{\partial P}\right)_{T}$$

35. The efficiency of an engine operating between 110°C and 25°C is

1.17.79 2.28.5% 3. 22.2%

36. The molar extinction coefficient of phenanthroline complex of iron (//) is 12,000 dm3.mol-1, cm-1. and the minimum detectable absorbance is 0.01. The minimum concentration of the complex in molarity that can be detected in a Lambert -Beer law cell of path length 1.00 cm is

1. 8.33 × 10⁻⁷ 2. 120 3.12×10^{5}

4. 0.01

37. The quantum yield of the following reaction is 2HI hv H2+ I2

2.1×10⁶ 3.1×10² 4.2

38. The selection rules for spectral transitions in atomic spectra are (i) An= 1,2,3,4..... And (ii) A£ ±1. Using these selection rules, determine which of the following transitions are allowed

I. $1s \rightarrow 2p$ II. $2s \rightarrow 3s$ III. $2p \rightarrow 3s$ IV. $4p \rightarrow 5f$ 1.1&II 2.1&III 3.II&IV 4.II&III

39. Which of the following spectra are shown by molecules when vibrational motion is accompanied by a change in the dipolemoment of the molecule?

1. Microwave

2. Raman

3. LR.

4. uv-visible

40. The organic compound with molecular formula C3H6 shows only one NMR signal is

1. cyclo propane

2. 1-propene

3. n-propane

4. cyclopropene

- 41. With respect to all alkali matals, which of the following is not correct?
 - 1. react readily with water and liberate H₂
 - 2. react with nitrogen and form nitrides
 - 3. dissolve in mercury
 - 4. soluble in anhydrous liquid ammonia

42. In which of the following reactions of N2H2, N2 is not evolved?

2 NoH4 + PICI4 -> I. N.H. + Na -+ 4. N₂H₄+IO₅ →

3. N₂H₄ + O₂ ->

43. Zircon belongs to which type of silicates ?

2. Ortho silicates 1. Chain silicates 4. Cyclic silicates

3. Pyrosilicates 44. Which of the following metals react with dilute

sulphuric acid and give H2 gas? iii. Zn

ii. Fe i. Cu 4. i, ii, iii 3. i. iii 2 11, 111 Lill

45. The number of amphoteric oxides in the following: CO_p SnO_p NO_p ZnO, SnO, NO, CO, V₂O₂, Al₂O₃, CrO,

4.4 3.3 1.5

46. Which of the following are the properties of interhalogen compounds?

ii. Reducing agents i. Polar molecules

iii. Low thermal stability

2 i, ii, iii only Li, ii only

4. ii. iii only 3. i. iii only

47. Which of the following are the common hydrolysis products of XeF, and XeF,?

iv. XeO, ii. HF i. Xe 3. ii, iii, iv 4. i, ii, iv

2 ii, iv 1. i,ii,iii 48. The order of stability of +2 oxidation state of

Cr. Mn, Fe and Co is:

L Mn > Fe > Cr > Co 2. Cr > Mn > Co > Fe

4. Fe > Mn > Co > Cr 3. Co > Mn > Fe > Cr

49. Which of the following statements is correct?

1. Titanium group metals form stable interstitial metal hydrides.

2. Cr(III) compounds are strong oxidizing agents

3. Mo, W differ in their properties

4. Ty(IV), is less acidic than Ty(III)

50. Which pair of ions has same number of electrons?

1. La3+, Ce3+

2. Eu3+, Gd3+

3. Dy3+, Sm2+

4. Lu3+, Yb2+

51. Which of the following reactions does not occur in liquid ammonia?

1. KCl + AgNO3 -+ AgCl + KNO,

Zn (NH_a)_a + 2NaNH_a → Na_aZn(NH_a) + 2NH_a

3. CuI + Na → Cu + NaI

4. BF₃ + NH₃ → BF₃. NH₃

52. The correct statement regarding Fajan's rules is:

1. The cations with smaller size have lower polariz-

2. For effective polarzation, there should be high charge on the cation or the anion or both

3. Cations with pseudo inert gas configuration have less polarzing power.

4. The anions with large size have less polarizability.

53. Which of the following is paramage nature? 3. NO 1.00

54. The indicator which can be used to day equivalence point in the titration of with HCl is:

2. Cresol red 1. Methyl red

4. Phenolphthales 3. Phenol red

55. Which of the following is not correct?

1. Copper is better conductor than biamuth

1. Copper is so soft that it can be cut with a conductor of all Sodium metal is a good conductor of electron

4. Tungsten melts at high temperatures

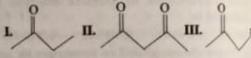
56. According to significant figure convention result obtained by adding 12.13, 19.0 and 1 1. 33.144 2. 33.14 3.33 4. 33.1

57. The molecule having S4 axis is :

2. BeCl₂ 3. CCL 1. SiCL 4. XeF.

58. Which of the following is insoluble in a nitric acid? 2. PbS 3. Bi,S,

1. HgS 59. The colour of HgNH,Cl is :


2. Yellow 3. Black 4. White 1. Red

60. Number of bonding electron pairs and hos. of lone pairs of electrons in CIF, SF, le respectively are:

1. 3,1; 4,2; 5,1 2, 3,1; 4,1; 5,2

4. 3,2; 4,2; 5,2 3, 3,2; 4,1; 5,1

61. Arrange the following in the correct acid order of the a-CH, protons.

1. I > III > II

2. 111 > 11 > 1

4. Cus

3. I < II < III

4.1 < 111 < 11

62. Heat of hydrogenations of three alkenes Ill respectively are -28,5, - 30.3 and -26.9 Kalm What are X, Y, Z?

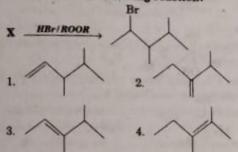
I. 2-Methyl -2-butene

II. 2-Methyl - 1- butene

III. 3-Methyl -1-butene

X Y Z 1. II Ш т

Z


Ш X Y Z

п Ш

X Y \mathbf{z} Ш П 63. An alkene P(C₃H₁₂) on HBr addition followed by reaction with Zn/H+ gives Q, which can also be prepared from R and S. What are P, R and S?

1.	P	R	S Me ₂ CuLi
	P	R	8
2.	1	(CH ₃) ₃ CCl	Et ₂ CuLi
	P	R	S
3.	1	_cı	(Me ₂ CH) ₂ CuLi
	P	R	s
4.	1	(CH.),CCI	Ma Culi

64. What is X in the following reaction?

65. An alkene X C₈H₈ on bromination followed by reaction with alc-KOH and then NaNH₂ gave Y.Y on hydration yielded Z. What is Z?

1. РЪСНОНСНа

2. PhCH₂CHO

3. PhCOCH,

4. PhCH2CH2OH

- 66. Which of the following statements is NOT correct with respect to cyclohexane conformations?
 - 1. Twist boat conformation is free from angle strain.
 - 2. Chair conformation is free from torsional strain.
 - 3. Boat form possess Pitzer strain.
 - Boat conformation is free from van der Waats strain.
- 67. What are X, Y, Z in the following conversion?

Benzene ii. X, ii. Y m- Nitrobenzoic acid

X Y Z

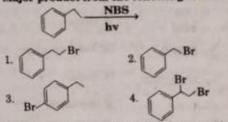
1. CH₃Cl/AlCl₃ HNO₃+H₂SO₄ KMnO₄/OHH₃O*

X Y Z

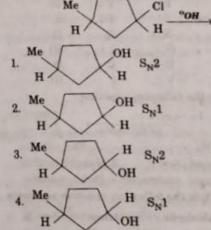
2. CH₃Cl/AlCl₃ KMnO₄/OHH₃O* HNO₃+ H₂SO₄

X Y Z

3. HNO₃+ H₂SO₄ Sn/HCl CH₃Cl/AlCl₃


X Y Z

4. HNO₃ + H₂SO₄ CH₃Cl/AlCl₃ RCO₃H


68. Identify the correct matched pair from the following

Substituent on	Influence on
benzene	benzene
IOMe	+M & -l
IINO ₂	+M
IIINHCOCH _a	-M
IVCHO	-M
1. II. III 2. I. III	3. II, IV 4. I, IV

69. Major product from the following reaction is

70. The product from the following reaction and mechanism of its formation are

71. 2-Methyl-2- butene on reaction with B₂H₆/H₂O₂. OH gave an alcohol X. Which of the following reactions give isomer of X which is a tertiary alcohol?

- 72. Which of the following conversions represe Kolbe reaction?
 - 1. Phenol → Salicilaladehyde.
 - 2. Penol → Anisole
 - 3. Phenol → Salicylic acid
 - 4. Phenol → Picric acid

Students List

SIR C.R.REDDY COLLEGE FOR WOMEN, ELURU PG ENTRANCE COACHING

2019-2020

SUB: CHEMISTRY

ATTENDANCE SHEET

s.NO	ROLL.NO	NAME OF THE STUDENT	CLASS	SIGNATURE OF THE STUDENT
1	174029	G.SANDHYA RANI	MPC	GI-SANDHYAROWI
2	171055	B.V.S.LAKSHMI	MPC	BUG lakopmi
3	174041	P.BABY RANI	CBZ	P. berburcon
4	171003	B.GNAPIKA	MPC	R. Chee
5	171064	K.RAJANI	MPC	KODO /
6	171067	K.JAYANTHI	MPC	K. Jackantu
7	17158	J.RAMYA	MPC	1. Danie
8	174014	N.S.DEEPIKA	CBZ	N.S. Deepska
9	174015	N.PRINKA	CBZ	N. Prindo
10	174020	Y.NAMARATHA	CBZ	V. Namanal -

SIGNATURE

Bors

ATTENDANCE LIST

		1 0 S.N	2	ω	4	5	6	7	00	9
		ROLL.NO 171003	171029	171055	171058	171064	171067	174014	174015	174020
								014)15	
		CLASS	MPC	MPC	MPC	MPC	MPC	CBZ	CBZ	CBZ
	21.			B.V.	J.R/	K.R/	_	N.S.		
		NAME OF THE STUDENT B.GNAPIKA	G.SANDHYA RANI	S.LAH	J.RAMYA	K.RAJANI	K.JAYANTHI	N.S.DEEPIKA	N.PRINKA	AMA
	1	A H	НҮА	B.V.S.LAKSHMI	Б		Ή	NA	Д	Y.NAMARATHA
		× %.			×	12	>	×	\ J.	
)	× %		×		×	×	X	×	X
		X SA	×	×	X	×	X	X	×	×
0		× 186		×	X	X	×	X	×	X
SIR C R REDDY COLLEGE FOR WOMEN, ELUR CAREER GUIDANCE & PLACEMENT CELL PG ENTRANCE COACHING 2019-2020 SUR: CHEMISTRY		× %	×	×	$\overline{}$	×	×	X	×	×
CAREER GUIDANCE & PL CAREER GUIDANCE & PL PG ENTRANCE COACHING SUB. CHEMISTE	9	X	×	×		×	×	×	×	×
TRAI CED	2	XXXX	1	×		×	×	X	X	×
SI GUI	SUI	× 8/8/2 × 8/6/		×	X	×	X	×	X	X
	3: C	× 8/6/2		×	X	X	\sim	~	\(\frac{1}{2} \)	X
ACH	HEN	× %	×	×	X	X	$\frac{2}{X}$	X	X	X
	SUB: CHEMISTRY	× 2/4		X	X	×	×	×	×	X
EV LAC	RY	× 3/2/2	×	×	×	×	×	×	×	×
019-	6	× 18/2%	×	×	×	×	×	×	×	×
CEMENT 2019-2020	5	× %		×	×	×	×	×	×	×
C R REDDY COLLEGE FOR WOMEN, EL CAREER GUIDANCE & PLACEMENT CELL SENTRANCE COACHING 2019-2020 SUID: CHEMISTRY		× 1/2/2		×	X	X	×	×	×	×
EL		× 3/6 × 19/6	×	×	×	\ \	×	×	×	X
RU	_	× %		×	×	×	×	×	×	×
	,	× %	X	X	×	×	×	×	×	×
	2	× 1/4/2	×	×	×	×	X.	×	×	X
	6	× 4/6/40	×	×	×	×	×	×	×	×
		× Vica	×	×	×	×	×	×	×	×
	6	× 8/8/	×	×	×	×	×	X	×	×
	5	18/2	×	X	×	×	X	×	×	×
	4	× W	X	X	X		×	×	×	X
	-	× 3/6/3		×	×		×	×	×	×
	0	× 3/2	×	X	X	×	×	×	×	X
	À	X By	×	×	X	X	×	X	×	×

REPORT

PROGRAMME: PG Entrance COACHING FOR III B.Sc. Aspirants in Chemistry subject.

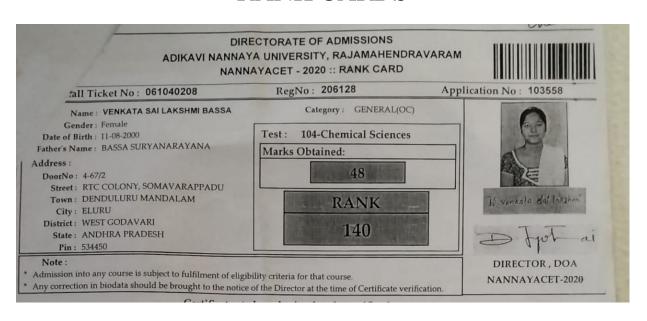
In association with IQAC &In accordance with the resolution made during the meeting and documented in the minutes, it was unanimously agreed to arrange PG entrance coaching classes for interested students pursuing IIIB.Sc (CBZ,MPC). This significant decision forms an integral part of the report on the PG entrance coaching classes in **Chemistry** subject conducted from 01-Aug-2020 to 30-Aug-2020 from 9:30 to 12:30 .These classes were conducted senior and expert faculty from the concerned department.

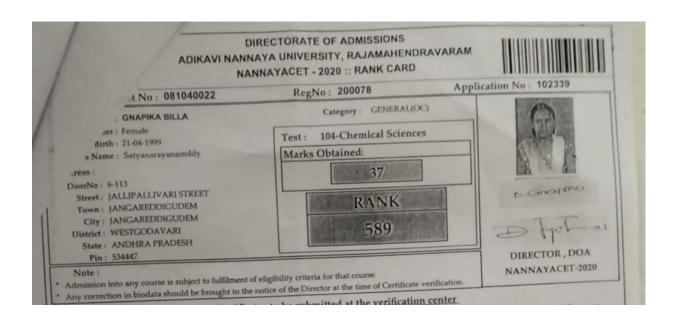
Approximately motivated students actively participated in the coaching sessions These meticulously organized classes aimed to prepare the students comprehensively for the upcoming PG entrance examinations scheduled in the month of May 2019. The coaching sessions were diligently conducted from 9:30 AM to 12:30 PM, adhering to a structured curriculum meticulously designed to equip students with the essential skills and knowledge required for success in the examination.

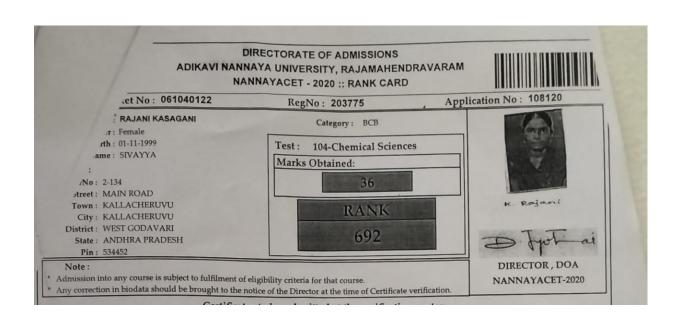
10 members were participated in this coaching and out of 10 members 4 were qualified and secured good ranks.

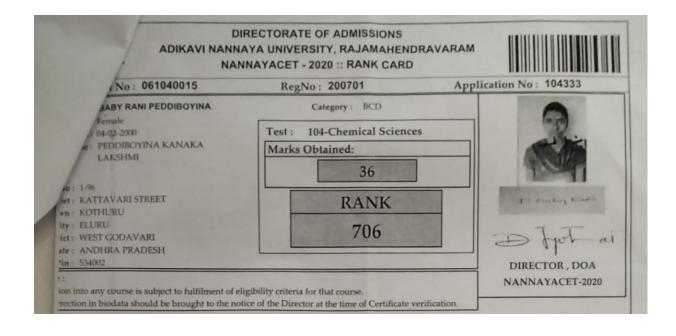
The outcomes of these coaching classes have been highly encouraging. Securing remarkable pg. ranks demonstrating both their commitment and the effectiveness of the coaching program. Furthermore.

The successful arrangement of these coaching classes aligns directly with the decision made during the meeting These sessions facilitated a conducive learning environment, significantly contributing to the preparedness and success of the students preparing for the PG entrance examination.


A Standout achievement includes one of our students BVS Lakshmi Pursuing 3rd Bsc. MPC who distinguishing themselves by securing outstanding 140th rank in NANNAYA CET and secured more ranks like 140, 589, 692, 706.


Their dedication has been instrumental in empowering our students for academic success.


LIST OF STUDENTS QUALIFIED IN M.Sc CHEMISTRY ENTRANCE EXAM 2019-2020


S.NO	NAME OF THE STUDENT	GROUP
1	VENKATA SAI LAKSHMI	MPC
2	GANPIKA BILLA	MPC
3	RAJANI KASAGANI	MPC
4	BABY RANI PEDDIBOYINA	CBZ

RANK CARDS

PHOTO GALLERY

NANNAYA CET PG ENTRANCE COACHING CHEMISTRY

YEAR: 2019-2020